Результаты испытаний электромагнитных теплосчетчиков КМ-5-Б на ТЭЦ-17, г. Санкт-Петербург.

Шинелев А.А., Бурдунин М.Н.

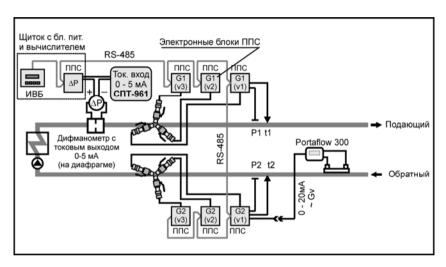
Компанией «ТБН энергосервис» разработаны и производятся счетчики-расходомеры РМ-5-Б и теплосчетчики КМ-5-Б для коммерческого учета тепла и теплоносителя на объектах с трубопроводами больших диаметров.

В этих приборах применяются погружные электромагнитные преобразователи скорости потока [1], а для измерения расхода используется метод «площадь-скорость».

В настоящее время запущены и приняты в эксплуатацию более двадцати систем коммерческого учета тепла и теплоносителя на источниках теплоснабжения. Приборы показали устойчивую, надежную работу в условиях эксплуатации на промышленных объектах [2].

подтверждения целью метрологических характеристик электромагнитного теплосчетчика КМ-5-БЗ в условиях эксплуатации на крупных ТЭЦ были запланированы и проведены испытания на ТЭЦ-17, г. Санкт-Петербург. Программа испытаний была согласована с метрологической службой ОАО «Ленэнерго» и руководством ТЭЦ-17. Местом для монтажа приборов были выбраны подающий и обратный трубопроводы (Ду=400мм) бойлера в цехе ТАИ ТЭЦ-17. Режимы работы бойлера позволяют изменять в этих трубопроводах следующие параметры теплоносителя: расход от 300 до 1500 м³/ч, температуру в подающем трубопроводе – от 85 до 110 °C, в обратном - от 45 до 55 °C, давление в подающем трубопроводе - от 0.8 до 1.5 $\kappa rc/cm^2$, в обратном – от 4 до 6.5 $\kappa rc/cm^2$. Контролируемыми параметрами при испытаниях были расход, давление и температура теплоносителя на входе и выходе подогревателя сетевой воды.

Испытания проводились в два этапа:


Этап 1 — моделирование и исследование работы теплосчетчика КМ-5-БЗ с помощью измерительной системы на базе РС и ультразвукового накладного расходомера Portaflow-300 (далее ИС) (см. рис. 1). На первом этапе вычислитель ИВБ из состава КМ-5-БЗ заменялся компьютером, который полностью моделировал работу теплосчетчика и, кроме этого, позволял реальном времени производить мониторинг и анализ работы ИС.

С помощью ИС проводились ежесекундные измерения расхода (G), температуры (t), давления (P), перепада давления на дифманометре (ΔP) , локальных скоростей в трех точках измерительного сечения (v1, v2, v3) в подающем и обратном трубопроводах.

Этап 2 – опытная эксплуатация теплосчетчика КМ-5-Б3.

В настоящее время еще не закончен. Проводятся ресурсные испытания теплосчетчика при различных режимах работы сетевого подогревателя.

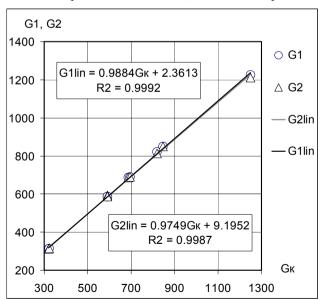
На обоих этапах показания КМ-5-Б3 сравнивались с показаниями контрольного прибора — расходомера на базе диафрагмы, дифманометра "Сапфир-22" (кл. 0,5 с dPпр=100 кПа) и вычислителя СПТ-961.

Анализ результатов, полученных на первом этапе.

Прежде всего, необходимо отметить, что в условиях испытаний накладной ультразвуковой расходомер Portaflow-300 не удалось применить, т.к. его сигнал был неустойчив и слишком мал. В то же КМ-5-Б3 vстойчивые показания, время лавал что косвенно свидетельствует o преимуществе электромагнитного измерения расхода по сравнению с ультразвуковым в данных условиях.

В таблице 1 приведены результаты сравнения показаний по массовому расходу КМ-5-Б3 с показаниями контрольного прибора. В таблице 1 приняты следующие обозначения:

Gк, т/ч - показания контрольного прибора.


G1, G2, т/ч - показания КМ-5-Б3 по массовому расходу в подающем и в обратном трубопроводах.

dG1=100(G1 - Gк) /Gк, % - относительное отклонение G1 от показаний контрольного прибора

 $dG2 = 100(G2 - G\kappa)$ /Gк, % - относительное отклонение G2 от показаний контрольного прибора dG = 100(G1 - G2) /G1, % - относительное отклонение G1 от G2.

					таолица т		
ſ	Gк	G1	G2	dG1	dG2	dG	
L	т/ч	т/ч	т/ч	%	%	%	
I	320	311.19	310.27	-2.8	-3.0	0.3	
I	322	314.45	313.14	-2.3	-2.8	0.4	
I	590	587.56	592.40	-0.4	0.4	-0.8	
I	590	585.42	587.18	-0.8	-0.5	-0.3	
Ī	688	687.18	686.81	-0.1	-0.2	0.1	
I	695	689.51	689.27	-0.8	-0.8	0.0	
I	820	822.81	812.80	0.3	-0.9	1.2	
I	848	850.95	849.05	0.3	0.1	0.2	
Ī	1250	1223.95	1211.36	-2.1	-3.1	1.0	

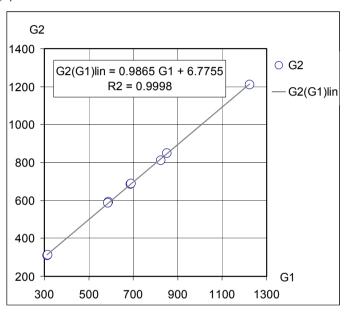
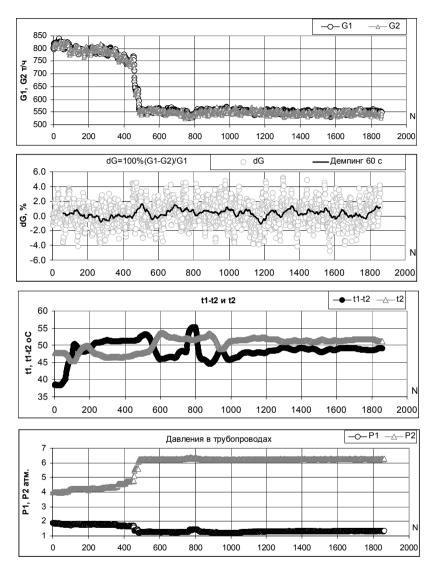

На рисунках 2 и 3 приведена графическая сводка результатов сравнения показаний КМ-5-Б3 по массовому расходу в подающем и обратном трубопроводах с показаниями контрольного прибора. На рисунке 2 по оси абсцисс отложена величина Gк, по оси ординат величины измеренных значения G1, G2. Там же приведены уравнения

Рис. 2. Сравнение показаний по массовому расходу КМ-5-Б3 с показаниями контрольного прибора

линейной аппроксимации $G1lin(G\kappa)$, $G2lin(G\kappa)$ и величина достоверности аппроксимации R^2 .

Данные, приведенные на рисунке 3 демонстрируют взаимосогласованность градуировочных характеристик каналов расхода G1, G2. На рис. 3 по оси абсцисс отложена величина G1, по оси ординат - величина G2. Там же приведено уравнение линейной аппроксимации G2lin(G1) и величина достоверности аппроксимации R²

Рис. 3. Сравнение показаний первого и второго каналов расхода КМ-5-Б3 между собой.


Из данных, приведенных в таблице 1 и на рисунках 2 - 3 видно, что во время испытаний показания КМ-5 по массовому расходу в подающей и обратной трубах совпадали в пределах погрешности измерений как между собой, так и с показаниями контрольного прибора.

На рисунках 4 и 5 приведены данные непрерывных измерений расходов и относительного отклонения G1 от G2 при переходе с режима работы бойлера: G=800 т/ч, t1=86°C, t2=47.7°C на режим: G=550 т/ч, t1=100°C, t2=51°C. Ниже приведены графики перехода.

Из приведенных данных, видно, что показания КМ-5 по Gm1 и Gm2 в пределах погрешности равны между собой (даже мгновенные) независимо от режима работы бойлера.

Литература:

- 1. Шинелев А.А., Бурдунин М.Н., Вельт И.Д., Михайлова Ю.В. Электромагнитные теплосчетчики КМ-5-Б и счетчики-расходомеры РМ-5-Б погружного типа для коммерческого учета тепла и теплоносителя на трубопроводах больших диаметров, Материалы 16-й Международной научно-практической конференции «Коммерческий учет энергоносителей»/ Сост. В.И.Лачков СПб.: Политехника, 2002
- 2. Шинелев А.А., Бурдунин М.Н., Есельсон А.Б. Практические результаты применения электромагнитных теплосчетчиков КМ-5-Б для коммерческого учета тепла и теплоносителя на источниках теплоснабжения. Материалы 17-й Международной научнопрактической конференции «Коммерческий учет энергоносителей»/ Сост. А.Г. Лупей СПб.: издательство «Борей-Арт», отпечатано в ООО «Политехника-сервис», 2003.

Рис. 5. Показания каналов массового расхода при переходе с режима G=800 τ /ч на режим G=550 τ /ч.